某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
|
甲 |
乙 |
进价(元/部) |
4000 |
2500 |
售价(元/部) |
4300 |
3000 |
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元,[毛利润=(售价-进价)×销售量]
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过商场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。
使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数
的零点。己知函数
(
m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为和
,且
,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线
上,当MA+MB最小时,求直线AM的函数解析式。
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少?
关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。
如图,P是正三角形ABC 内的一点,且PA=6,PB=8,PC=10。若将△PAC绕点A逆时针旋转后,得到△P/AB。⑴求点P与点P′之间的距离;⑵∠APB的度数。
学校课外生物小组的试验园地是长20米,宽15米的长方形。为了便于管理,现要在中间开辟一横两纵等宽的小道(如图),要使种植面积为252平方米,求小道的宽。