(18分)如图所示,在xOy平面内,y轴左侧有一个方向竖直向下,水平宽度为L=×10-2 m,电场强度为E=1.0×104 N/C的匀强电场。在y轴右侧有一个圆心位于x轴上,半径r=0.01 m的圆形磁场区域,磁场方向垂直纸面向里,磁场感应强度B=0.01 T,坐标为x0=0.04 m处有一垂直于x轴的面积足够大的荧光屏PQ,今有一带正电的粒子从电场左侧沿+x轴方向射入电场,穿过电场时恰好通过坐标原点,速度大小v=2×106 m/s,方向与x轴成30°斜向下。若粒子的质量m=1.0×10-20 kg,电荷量q=1.0×10-10 C,粒子重力不计,试求:
(1)粒子射入电场时位置的纵坐标和初速度的大小;
(2)粒子在圆形磁场中运动的最长时间;
(3)若圆形磁场可以沿x轴移动,圆心O′在x轴上的移动范围为(0.01,+∞),由于磁场位置的不同,导致该粒子打在荧光屏上的位置也不同,试求粒子打在荧光屏上的范围。
如图所示, 为粒子加速器; 为速度选择器,两平行导体板之间有方向相互垂直的匀强电场和匀强磁场,磁场的方向垂直纸面向里,磁感应强度为 。从 点释放一初速度为0、质量为 、电荷量为 的带正电粒子,经 加速后恰能以速度 沿直线(图中平行于导体板的虚线)通过 。不计重力。
(1)求粒子加速器 的加速电压 ;
(2)求速度选择器N两板间的电场强度 的大小和方向;
(3)仍从 点释放另一初速度为0、质量为 、电荷量为 的带正电粒子,离开N时粒子偏离图中虚线的距离为 ,求该粒子离开N时的动能 。
如图所示,小物块A、B的质量均为 ,B静止在轨道水平段的末端。A以水平速度 与B碰撞,碰后两物块粘在一起水平抛出。抛出点距离水平地面的竖直高度为 ,两物块落地点距离轨道末端的水平距离为 ,取重力加速度 。求:
(1)两物块在空中运动的时间t;
(2)两物块碰前A的速度 的大小;
(3)两物块碰撞过程中损失的机械能 。
图是一种花瓣形电子加速器简化示意图,空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ。各区感应强度恒定,大小不同,方向均垂直纸面向外。电子以初动能 从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速,已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为 ,电子质量为m,电荷量为e,忽略相对论效应,取 。
(1)当 时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角 均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示,求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;
(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射。当 时,要保证电子从出射区域出射,求k的最大值。
算盘是我国古老的计算工具,中心带孔的相同算珠可在算盘的固定导杆上滑动,使用前算珠需要归零,如图所示,水平放置的算盘中有甲、乙两颗算珠未在归零位置,甲靠边框b,甲、乙相隔 ,乙与边框a相隔 ,算珠与导杆间的动摩擦因数 。现用手指将甲以 的初速度拨出,甲、乙碰撞后甲的速度大小为 ,方向不变,碰撞时间极短且不计,重力加速度g取 。
(1)通过计算,判断乙算珠能否滑动到边框a;
(2)求甲算珠从拨出到停下所需的时间。
如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度 向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为 。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为 ,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。