如图,把一个质量为m的小球用细线悬挂起来,就成为一个摆,细线长为L(小球的半径忽略),最大偏角为θ,忽略空气阻力,重力加速度为g,求小球运动到最低点O时细线对小球的拉力。
当物体从高空下落时,所受阻力会随物体的速度增大而增大,因此经过下落一段距离后将匀速下落,这个速度称为此物体下落的收尾速度。研究发现,在相同环境条件下,球形物体的收尾速度仅与球的半径和质量有关.下表是某次研究的实验数据
小球编号 |
A |
B |
C |
D |
E |
小球的半径(×10-3m) |
0.5 |
0.5 |
1.5 |
2 |
2.5 |
小球的质量(×10-6kg) |
2 |
5 |
45 |
40 |
100 |
小球的收尾速度(m/s) |
16 |
40 |
40 |
20 |
32 |
(1)根据表中的数据,求出B球与C球在达到终极速度时所受阻力之比.
(2)根据表中的数据,归纳出球型物体所受阻力f与球的速度大小及球的半径的关系(写出有关表达式、并求出比例系数).
(3)现将C号和D号小球用轻质细线连接,若它们在下落时所受阻力与单独下落时的规律相同.让它们同时从足够高的同一高度下落,试求出它们的收尾速度;并判断它们落地的顺序.
、质量为M,长度为L的木板置于光滑的水平地面上,在木板的左端放有一个质量为m的木块,开始时小木块和木板都处于静止状态。某时刻,用一水平恒力将小木块从左端推向右端。如图17所示。若小木块与木块之间的动摩擦因素为u,且认为两者之间静摩擦力最大值与其间滑动摩擦力相等,试求:
(1)若能将小木块推向木板右端,水平恒力的最小值F0多大?
(2)若实际所用推力为F(F>F0),小木块滑到木板右端时木板的速度多大?
如图16所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一初速度冲进轨道,到达半圆轨道最高点M后飞出轨道,落地点到N点的距离为4R.忽略圆管内径,不计空气阻力及各处摩擦,已知重力加速度为g.求:
(1)小球从飞出轨道到落地的时间t.
(2)小球从M点飞出时的速度大小v.
(3)小球在轨道最高点M时对轨道的压力F.
如图15所示,将一条轻而柔软的细绳一端固定在天花板上的A点,另一端固定在竖直墙上的B点,A和B到O点的距离相等,绳长为OA的两倍.滑轮的大小与质量均可忽略,滑轮下悬挂一质量为m的重物.设摩擦力可忽略,求平衡时绳所受的拉力为多大?
如图所示,相距为R的两块平行金属板M、N正对着放置,S1、S2分别为M、N板上的小孔,S1、S2、O三点共线,它们的连线垂直M、N,且S2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子经S1进入M、N间的电场后,
通过S2进入磁场.粒子在S1处的速度以及粒子所受的重力均不计.
(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小v;
(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;
(3)当M、N间的电压不同时,粒子从S1到打在D上经历的时间t会不同,求t的最小值.