我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A、B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集.两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:
沼气池 |
修建费用(万元/个) |
可供使用户数(户/个) |
占地面积(平方米/个) |
A型 |
3 |
20 |
10 |
B型 |
2 |
15 |
8 |
政府土地部门只批给该村沼气池用地212平方米,设修建A型沼气池x个,修建两种沼气池共需费用y万元.
(1)求y与x之间函数关系式.
(2)试问有哪几种满足上述要求的修建方案.
(3)要想完成这项工程,每户居民平均至少应筹集多少钱?
如图,已知中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.
(1)解不等式组(2)解方程:
(1)计算:(2)
如图,抛物线交坐标轴于A、B、D三点,过点D作
轴的平行线交抛物线于点C.直线l过点E(0,-
),且平分梯形ABCD面积.
⑴ 直接写出A、B、D三点的坐标;
⑵ 直接写出直线l的解析式;
⑶ 若点P在直线l上,且在x轴上方,tan∠OPB=,求点P的坐标.
△ABC中,∠C=90°,点D在边AB上,AD=AC=7,BD=BC.动点M从点C出发,以每秒1个单位的速度沿CA向点A运动,同时,动点N从点D出发,以每秒2个单位的速度沿DA向点A运动.当一个点到达点A时,点M、N两点同时停止运动.设M、N运动的时间为t秒.
⑴ 求cosA的值.
⑵ 当以MN为直径的圆与△ABC一边相切时,求t的值.