已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
已知函数(
,
),
.
(1)求函数的单调区间,并确定其零点个数;
(2)若在其定义域内单调递增,求
的取值范围;
(3)证明不等式 (
).
已知二次函数+
的图象通过原点,对称轴为
,
.
是
的导函数,且
.
(1)求的表达式(含有字母
);
(2)若数列满足
,且
,求数列
的通项公式;
(3)在(2)条件下,若,
,是否存在自然数
,使得当
时
恒成立?若存在,求出最小的
;若不存在,说明理由.
已知椭圆过
和点
.
(1)求椭圆的方程;
(2)设过点的直线
与椭圆
交于
两点,且
,求直线
的方程.
如图,四棱锥的底面
为一直角梯形,侧面PAD是等边三角形,其中
,
,平面
底面
,
是
的中点.
(1)求证://平面
;
(2)求证:;
(3)求三棱锥的体积
.
从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下图所示:
(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分(平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和);
(2)若用分层抽样的方法从分数在和
的学生中共抽取
人,该
人中成绩在
的有几人?
(3)在(2)中抽取的人中,随机抽取
人,求分数在
和
各
人的概率.