如图所示,内圆半径为r、外圆半径为3r的圆环区域内有垂直纸面向里、磁感应强度为B的匀强磁场。圆环左侧的平行板电容器两板间电压为U,靠近M板处静止释放质量为m、 电量为q的正离子,经过电场加速后从N板小孔射出,并沿圆环直径方向射入磁场,不计离子的重力,忽略平行板外的电场。求:
(1)离子从N板小孔射出时的速率;
(2)离子在磁场中做圆周运动的周期;
(3)要使离子不进入小圆区域,电压U的取值范围。
如图,真空中xOy平面直角坐标系上的
三点构成等边三角形,边长
。若将电荷量均为
的两点电荷分别固定在
、
点,已知静电力常量
。求:
(1)两点电荷间的库仑力大小;
(2) 点的电场强度的大小和方向。
已知地球的自转周期和半径分别为
和
,地球同步卫星
的圆轨道半径为
。卫星B沿半径为
的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同。求:
(1)卫星
做圆周运动的周期;
(2)卫星
和
连续地不能直接通讯的最长时间间隔(信号传输时间可忽略)。
如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(
平面)向外;在第四象限存在匀强电场,方向沿
轴负向。在y轴正半轴上某点以与
轴正向平行、大小为
的速度发射出一带正电荷的粒子,该粒子在
点沿垂直于
轴的方向进人电场。不计重力。若该粒子离开电场时速度方向与y轴负方向的夹角为
,求:
(1)电场强度大小与磁感应强度大小的比值;
(2)该粒子在电场中运动的时间。
万有引力定律揭示了天体运动的规律与地上物体运动规律具有内在的一致性。
(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。已知地球的质量为
,自转周期为
,引力常量为
。将地球看作是半径为
,质量均匀分布的球体,不考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数
。
a.若在北极上空
处称量,弹簧秤的读数为
,求比值
的表达式(并就
的情形算出具体数值,(计算结果保留两位有效数字)
b.若在赤道地面处称量,弹簧秤的读数为 ,求比值 的表达式
(2)设想地球绕太阳公转的半径为 ,太阳的半径为 ,地球的半径为 ,三者均减小为现在的1.0%,太阳和地球的密度均匀且不变,仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算"设想地球"的一年将变为多长?
如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块
和
分别静止在圆弧轨道的最高点和最低点。现将
无初速度释放,
与
碰撞后结合为一个整体,并沿桌面滑动。已知圆弧轨道光滑,半径
,
与
的质量相等,
与
整体与桌面之间的动摩擦因数
。取重力加速度
,求:
(1)碰撞前瞬间
的速率
。
(2)碰撞后瞬间
与
整体的速度。
(3)
与
整体在桌面上滑动的距离
。