如图所示,E为内阻不能忽略的电池,R1、R2、R3均为定值电阻,与
均为理想电表;开始时开关S闭合,
均有读数,某时刻发现
和
读数均变大,则电路中可能出现的故障是
A.R1断路 | B.R2断路 | C.R1短路 | D.R3短路 |
滑块以速率v1沿固定长斜面由底端向上运动,当它回到出发点时速率变为v2,且v2<v1若滑块向上运动的位移中点为A,取斜面底端重力势能为零,则()
A.上滑过程中机械能的减少量大于下滑过程中机械能的减少量 |
B.上滑过程中机械能的减少量等于下滑过程中机械能的减少量 |
C.上滑过程中经过A点时,动能大于重力势能 |
D.上滑过程中摩擦力的平均功率大于下滑过程中摩擦力的平均功率 |
如图所示,在光滑水平面上方,有两个磁感应强度大小均为B、方向相反的水平匀强磁场,如图所示,PQ为两个磁场的边界,磁场范围足够大。一个边长为a ,质量为m,电阻为R的正方形金属线框垂直磁场方向,以速度v从图示位置向右运动,当线框中心线AB运动到PQ重合时,线框的速度为v/2,则
A.此时线框中的电功率为
B.此时线框的加速度为
C.此过程通过线框截面的电量为
D.此过程回路产生的电能为
将一物体以一定的初速度从某一高度处竖直上抛,一段时间后物体回到原出发点,已知空气阻力与其速度成正比,则下面说法正确的是
A.上升过程所用时间与下降过程所用时间相等 |
B.上升过程所用时间小于下降过程所用时间 |
C.上升和下降过程,小球的机械能都减少,且上升过程机械能的减少量大于下降过程 |
D.在出发点,上升时重力的瞬时功率小于下降时的瞬时功率 |
如图所示,ABCD为固定的水平光滑矩形金属导轨,处在方向竖直向下,磁感应强度为B的匀强磁场中,AB间距为L,左右两端均接有阻值为R的电阻,质量为m、长为L且不计电阻的导体棒MN放在导轨上,与导轨接触良好,并与轻质弹簧组成弹簧振动系统.开始时,弹簧处于自然长度,导体棒MN具有水平向左的初速度v0,经过一段时间,导体棒MN第一次运动到最右端,这一过程中AB间R上产生的焦耳热为Q,则()
A.初始时刻棒所受的安培力大小为![]() |
B.当棒再一次回到初始位置时,AB间电阻的热功率为![]() |
C.当棒第一次到达最右端时,弹簧具有的弹性势能为![]() |
D.当棒第一次到达最左端时,弹簧具有的弹性势能大于![]() ![]() |
电磁轨道炮工作原理如图所示。待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触。电流I从一条轨道流入,通过导电弹体后从另一条轨道流回。轨道电流可形成在弹体处垂直于轨道面得磁场(可视为匀强磁场),磁感应强度的大小与I成正比。通电的弹体在轨道上受到安培力的作用而高速射出。现欲使弹体的出射速度增加至原来的2倍,理论上可采用的方法是()
A.只将轨道长度L变为原来的2倍 |
B.只将电流I增加至原来的2倍 |
C.只将弹体质量减至原来的一半 |
D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其它量不变 |