从数列中抽出一些项,依原来的顺序组成的新数列叫数列
的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)设是无穷等比数列,首项
,公比为
.求证:当
时,数列
不存在
是无穷等差数列的子列.
如图,
已知椭圆E:的离心率为
,过左焦点
且斜率为
的直线交
椭圆E于A,B两点,线段AB的中点为M,直线:
交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数,使得四边形AOBC为平行四边形?若存在求出
的值,若不存在说明理
由.
已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得
,求
的取值范围.
如图,四边形ABCD与四边形都为正方形,
,F
为线段的中点,E为线段BC上的动点.
(1)当E为线段BC中点时,求证:平面AEF;
(2)求证:平面AEF平面;
(3)设,写出
为何值时MF⊥平面AEF(结论不要求证明).
年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”。
(1)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?
(2)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.