看图填空:
已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠ADC=90°,∠EFC=90°(垂线的定义)
∴ =
∥
∴∠1=
∠2=
∵∠1=∠2(已知)
∴ =
∴AD平分∠BAC(角平分线定义)
已知:二次函数(m为常数).
(1)若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上.
①求m的值;
②四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C两点,求平移后的图象对应的函数解析式;
(2)当0≤≤2时,求函数
的最小值(用含m的代数式表示).
如图,在Rt△ABC中∠ABC=90°,BA=BC,P在△ABC的内部,且∠APB=135°,PA:PC=1:3,求PA:PB
设二次函数的图象为C1.二次函数
的图象与C1关于y轴对称.
(1)求二次函数的解析式;
(2)当≤0时,直接写出
的取值范围;
(3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数
( k,m为常数,k≠0)的图象经过A,B两点,当
时,直接写出x的取值范围.
已知二次函数.
(1)若点与
在此二次函数的图象上,则
(填 “>”、“=”或“<”);
(2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点.
(1)求证:DE为⊙O的切线;
(2)若DE=3,AC=8,求直径AB的长.