已知圆的方程为:
,直线的方程为
,点
在直线上,过点
作圆
的切线
,切点为
.
(1)若,求点
的坐标;
(2)若点的坐标为
,过点
的直线与圆
交于
两点,当
时,求直线
的方程;
(3)求证:经过(其中点
为圆
的圆心)三点的圆必经过定点,并求出所有定点的坐标.
(本题15分)如图,三棱锥中,
底面
,
是正三角形,
,
,
是
的中点.
(1)求证:平面
;
(2)设二面角的大小为
,求
的值.
(本题14分)已知数列满足:
,
.
(1)求数列的通项公式;
(2)若,求数列
的前
项和.
(本题14分)在中,已知
(1)求角C;
(2)若,求
的最大值.
(本小题满分14分)已知椭圆的右焦点为
,且点
在椭圆
上,
为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线
与椭圆
交于不同的两点
、
,且
为锐角,求直线
的斜率
的取值范围;
(Ⅲ)过椭圆上异于其顶点的任一点
,作圆
的两条切线,切点分别为
(
不在坐标轴上),若直线
在
轴、
轴上的截距分别为
、
,证明:
为定值.
(本小题满分13分)已知函数.
(Ⅰ)求函数的极大值;
(Ⅱ)设定义在上的函数
的最大值为
,最小值为
,且
,求实数
的取值范围.