游客
题文

已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为
(1)若,求点的坐标;
(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;
(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.

科目 数学   题型 解答题   难度 较易
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

如图,四棱锥中,底面是平行四边形,
底面
(Ⅰ)求证:;(Ⅱ)若,求二面角的余弦值;
(Ⅲ)当时,在线段上是否存在一点使二面角,若存在,试确定点的位置;若不存在,请说明理由。

已知,椭圆经过点,两个焦点的坐标为
(Ⅰ)求椭圆的方程;(Ⅱ)是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明:直线的斜率为定值,并求出这个定值。

(1)证明直线和平面垂直的判定定理,即已知:如图1,求证:
(2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即
已知:如图2,求证:

已知中心在原点,对称轴为坐标轴的双曲线的一个焦点为
且该双曲线上一点到两个焦点的距离差的绝对值为
(Ⅰ)求双曲线的标准方程.
(Ⅱ)过点且倾斜角为的直线与双曲线交于两点,求线段的长。

如图,在正三棱柱中, 的中点。
(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号