已知圆的方程为:
,直线的方程为
,点
在直线上,过点
作圆
的切线
,切点为
.
(1)若,求点
的坐标;
(2)若点的坐标为
,过点
的直线与圆
交于
两点,当
时,求直线
的方程;
(3)求证:经过(其中点
为圆
的圆心)三点的圆必经过定点,并求出所有定点的坐标.
如图,四棱锥中,底面
是平行四边形,
底面
(Ⅰ)求证:;(Ⅱ)若
,求二面角
的余弦值;
(Ⅲ)当时,在线段
上是否存在一点
使二面角
为
,若存在,试确定点
的位置;若不存在,请说明理由。
已知,椭圆经过点
,两个焦点的坐标为
(Ⅰ)求椭圆的方程;(Ⅱ)
是椭圆
上的两个动点,如果直线
的斜率与
的斜率互为相反数,证明:直线
的斜率为定值,并求出这个定值。
(1)证明直线和平面垂直的判定定理,即已知:如图1,且
,
求证:
(2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即
已知:如图2,求证:
已知中心在原点,对称轴为坐标轴的双曲线的一个焦点为
且该双曲线上一点到两个焦点的距离差的绝对值为
(Ⅰ)求双曲线的标准方程.
(Ⅱ)过点且倾斜角为
的直线与双曲线交于
两点,求线段
的长。
如图,在正三棱柱中,
为
的中点。
(Ⅰ)求证:平面
;(Ⅱ)求直线
与平面
所成角的正弦值