一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:
(Ⅰ)连续取两次都是白球的概率;
(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.
已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F
分别是线段AB.BC的中点,
(1)证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD;.
(3)若与平面
所成的角为
,求二面角
的余弦值.
已知△的三个内角
、
、
所对的边分别为
、
、
.
,且
.(1)求
的大小;(2)若
.求
.
已知数列满足
,
,
.
(1)求数列的通项公式;
(2)证明:对于一切正整数,有
.
已知函数(
)是奇函数,
有最大值
且.
(1)求函数的解析式;
(2)是否存在直线与
的图象交于P、Q两点,并且使得
、
两点关于点
对称,若存在,求出直线
的方程,若不存在,说明理由.