我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心,旋转的角度称为旋转角.
(1)如图(1),△ABC经过旋转得到△DEF.试用直尺和圆规作出旋转中心(保留作图痕迹,不写作法);
(2)如图(2),正方形ABCD中,E、F分别为CD、AD的中点,连接BE、CF,△BCE按逆时针方向旋转后得到△CDF,则旋转中心为 (请在图中画出该点,标上字母,并回答),旋转的最小角度为 .
已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE。求证:(1)△ABC≌△DEF;(2)GF=GC。
(1)计算÷
;(2)分解因式
.
在平面直角坐标系中,已知二次函数
的图象经过点
和点
,直线
经过抛物线的顶点且与
轴垂直,垂足为
.
求该二次函数的表达式;
设抛物线上有一动点
从点
处出发沿抛物线向上运动,其纵坐标
随时间
≥
)的变化规律为
.现以线段
为直径作
.
①当点在起始位置点
处时,试判断直线
与
的位置关系,并说明理由;在点
运动的过程中,直线
与
是否始终保持这种位置关系? 请说明你的理由;
②若在点开始运动的同时,直线
也向上平行移动,且垂足
的纵坐标
随时间
的变化规律为
,则当
在什么范围内变化时,直线
与
相交? 此时,若直线
被
所截得的弦长为
,试求
的最大值.
知识迁移
当且
时,因为
≥
,所以
≥
,从而
≥
(当
时取等号).
记函数,由上述结论可知:当
时,该函数有最小值为
直接应用
已知函数与函数
, 则当
____时,
取得最小值为___.
变形应用
已知函数与函数
,求
的最小值,并指出取得
该最小值时相应的的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千
米为元;三是折旧费,它与路程的平方成正比,比例系数为
.设该汽车一次运输的路
程为千米,求当
为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
如图所示,,
,
,点
是以
为直径的半圆
上一动点,
交直线
于点
,设
.
当
时,求
的长;
当
时,求线段
的长;
若要使点
在线段
的延长线上,则
的取值范围是_______.(直接写出答案)