(本小题满分14分)已知函数,
,设曲线
在点
处的切线方程为
. 如果对任意的
,均有:
①当时,
;
②当时,
;
③当时,
,
则称为函数
的一个“ʃ-点”.
(1)判断是否是下列函数的“ʃ-点”:
①; ②
.(只需写出结论)
(2)设函数.
(ⅰ)若,证明:
是函数
的一个“ʃ-点”;
(ⅱ)若函数存在“ʃ-点”,直接写出
的取值范围.
(本小题满分12分)公差不为零的等差数列中,
且
成等比数列。
(1)求数列的通项公式;
(2)设,求数列
的通项公式
(本小题满分10分)选修4-5:不等式选讲:
已知函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若关于的不等式
恒成立,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程:
以直角坐标系的原点为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线
相交于
、
两点,当
变化时,求
的最小值.
(本小题满分10分)选修4-1:几何证明选讲:
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
(Ⅰ)求证:;
(Ⅱ)若,求
的长.
(本小题满分12分) 设函数
(1)当时,求函数
的单调区间;
(2)令<
≤
,其图像上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当时,方程
在区间
内有唯一实数解,求实数
的取值范围.