(本小题满分12分)设函数.
(1)当时,求函数
的最大值;
(2)令其图象上任意一点
处切线的斜率
,恒成立,求实数
的取值范围;
(3)当,
,方程
有唯一实数解,求正数
的值.
已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
在直三棱柱ABC-A1B1C1中,△ABC为等腰三角形,∠BAC=90°,且AB=AA1,E、F分别为C1C、BC的中点。
(1)求证:B1F⊥平面AEF
(2)求二面角B1-AE-F的余弦值。
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为。甲、乙、丙三位同学每人购买了一瓶该饮料。
(1)求甲中奖且乙、丙没有中奖的概率;
(2)求中奖人数的分布列及数学期望E
。
f(x)=sin2x+
(
>0),且函数y=f(x)的图象相邻两条对称轴之间的距离为
。
(1)求的值及f(x)的单调递增区间;
已知是定义在
上的奇函数,当
时,
(1)求的解析式;
(2)是否存在负实数,使得当
的最小值是4?如果存在,求出
的值;如果不存在,请说明理由。
(3)对如果函数
的图像在函数
的图像的下方,则称函数
在D上被函数
覆盖。求证:若
时,函数
在区间
上被函数
覆盖。