设a1,a2,…,an为正数,求证:+
+…+
+
≥a1+a2+…+an.
已知函数
(
且
)恰有一个极大值点和一个极小值点,其中一个是
.
(Ⅰ)求函数
的另一个极值点;
(Ⅱ)求函数
的极大值
和极小值
,并求
时
的取值范围.
已知抛物线
:
,直线
交
于
两点,
是线段
的中点,过
作
轴的垂线交
于点
.
(Ⅰ)证明:抛物线
在点
处的切线与
平行;
(Ⅱ)是否存在实数
使
,求
的值;若不存在,说明理由.
三棱锥被平行于底面 的平面所截得的几何体如图所示,截面为 , , 平面 , , , , , .
(Ⅰ)证明:平面
平面
;
(Ⅱ)求二面角
的大小.
某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得
分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.
(Ⅰ)求该射手恰好射击两次的概率;
(Ⅱ)该射手的得分记为
,求随机变量
的分布列及数学期望.
已知函数
.
(Ⅰ)求函数
的最小正周期及最值;
(Ⅱ)令
,判断函数
的奇偶性,并说明理由.