已知抛物线y="Ax" 2 +Bx+C与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
(4)若点N的坐标为(3,4),Q为x轴上一点,△ONQ为等腰三角形,请直接写出点Q的坐标。
确定下列抛物线的开口方向、对称轴和顶点坐标
(1)(2)
解方程
(1)(2)x2﹣5x﹣6="0"
某商品的进价为每件40元,售价为每件50元,每个月可卖出200件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于进价的140%).设每件商品的售价上涨元(
为正整数),每个月的销售利润为
元.
(1)求与
的函数关系式并直接写出自变量
的取值范围;
(2)每件商品的售价m定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
⑶每件商品的售价m定为多少元时,每个月的利润恰为2160元?根据以上结论,请你直接写出售价m在什么范围时,每个月的利润不低于2160元?
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)若BC=6,AB=AC=10,求⊙O的半径.
如图 ,在ΔABC中,AB=AC,∠A=360,线段 AB 的垂直平分线交 AB于 D,交 AC于 E,连接BE.
(1)求证:∠CBE=36°;(2)求证:AE2 = AC·EC.