在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,
①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.
②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.
在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍 ,图书馆离宿舍 .周末,小亮从宿舍出发,匀速走了 到食堂;在食堂停留 吃早餐后,匀速走了 到图书馆;在图书馆停留 借书后,匀速走了 返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离 与离开宿舍的时间 之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表:
离开宿舍的时间 |
2 |
5 |
20 |
23 |
30 |
离宿舍的距离 |
0.2 |
0.5 |
0.7 |
|
|
(Ⅱ)填空:
①食堂到图书馆的距离为 ;
②小亮从食堂到图书馆的速度为 ;
③小亮从图书馆返回宿舍的速度为 ;
④当小亮离宿舍的距离为 时,他离开宿舍的时间为 .
(Ⅲ)当 时,请直接写出 关于 的函数解析式.
如图, , 两点被池塘隔开,在 外选一点 ,连接 , .测得 , , .根据测得的数据,求 的长(结果取整数).
参考数据: , , .
在 中,弦 与直径 相交于点 , .
(Ⅰ)如图①,若 ,求 和 的大小;
(Ⅱ)如图②,若
,过点
作
的切线,与
的延长线相交于点
,求
的大小.
农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位: 进行了测量.根据统计的结果,绘制出如图的统计图①和图②.
请根据相关信息,解答下列问题:
(Ⅰ)本次抽取的麦苗的株数为 ,图①中 的值为 ;
(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.
解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为 .