等比数列的首项为
,公比为
,用
表示这个数列的第n项到第m项共
项的和.
(Ⅰ)计算,
,
,并证明它们仍成等比数列;
(Ⅱ)受上面(Ⅰ)的启发,你能发现更一般的规律吗?写出你发现的一般规律,并证明.
【选修4-1:几何证明选讲】
如图,在中,
于
,
于
,
交
于点
,若
,
.
(1)求证:;
(2)求线段的长度.
已知函数.
(1)若恒成立,试确定实数
的取值范围;
(2)证明:.
椭圆,作直线
交椭圆于
两点,
为线段
的中点,
为坐标原点,设直线
的斜率为
,直线
的斜率为
,
.
(1)求椭圆的离心率;
(2)设直线与
轴交于点
,且满足
,当
的面积最大时,求椭圆
的方程.
如图,四棱锥中,
底面
,
,底面
为梯形,
,
,
.
(1)求证:平面平面
;
(2)求四棱锥的体积
.
某班为了调查同学们周末的运动时间,随机对该班级50名同学进行了不记名的问卷调查,得到了如下表所示的统计结果:
运动时间不超过2小时 |
运动时间超过2小时 |
合计 |
|
男生 |
10 |
20 |
30 |
女生 |
13 |
7 |
20 |
合计 |
23 |
27 |
50 |
(1)根据统计结果,能否在犯错误概率不超过0.05的前提下,认为该班同学周末的运动时间与性别有关?
(2)用分层抽样的方法,从男生中抽取6名同学,再从这6名同学中随机抽取2名同学,求这两名同学中恰有一位同学运动时间超过2小时的概率.
附:,其中
.