十一黄金期间,五台山7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):
日期 |
1日 |
2日 |
3日 |
4日 |
5日 |
6日 |
7日 |
人数变化/万人 |
+0.5 |
+0.7 |
+0.8 |
![]() |
![]() |
+0.2 |
![]() |
(1)请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?
(2)如果9月30日旅游人数为2万人,平均每人消费300元,请问风景区在此7天内总收入为多少万元?
求证:角平分线上的点到这个角的两边距离相等.
已知:
求证:
证明:
解二元一次方程组:.
已知△ABC是等腰直角三角形,∠A = 90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图.
(1)若BD是AC的中线,求的值;
(2)若BD是∠ABC的角平分线,求的值;
(3)结合(1)、(2),试推断的取值范围(直接写出结论,不必证明),并探究
的
值能小于吗?若能,求出满足条件的D点的位置;若不能,说明理由
已知抛物线y = x2-2x + m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形.
王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.
(1)请用a表示第三条边长;
(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;
(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.