(本小题满分15分)已知函数.
(1)当时,求函数
的单调递增区间;
(2)求所有的实数,使得对任意
时,函数
的图象恒在函数
图象的下方;
(3)若存在,使得关于
的方程
有三个不相等的实数根,求实数
的取值范围.
已知函数(a为常数)
(1)如果对任意恒成立,求实数a的取值范围;
(2)设实数满足:
中的某一个数恰好等于a,且另两个恰为方程
的两实根,判断①
,②
,③
是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数
,并求
的最小值;
(3)对于(2)中的,设
,数列
满足
,且
,试判断
与
的大小,并证明。
下图是一个三角形数阵,从第二行起每个数都等于它肩上两个数的和,第
行的第一个数为
(Ⅰ)写出关于
的表达式:
,不需证明。
(Ⅱ)求第行中所有数的和
;
(Ⅲ)当时,求数阵中所有
数的和.
右图的程序可产生一系列随机数,其工作原理如下:
①从集合D中随机抽取1个数作为自变量输入;
②从函数与
中随机选择一个作为
进行计算;
③输出函数值。
若,
,
,
(1)求的概率;
(2)将程序运行4次,求恰好有2次的输出结果是奇数的概率
设函数的最小值记为g(t).
(1)求g(t)的表达式;
(2)讨论g(t)在区间[-1,1]内的单调性;
(3)当恒成立,其中k为正数,求k的取值范围.
如图,在正三棱柱中,
分别是
的中点,
.
(Ⅰ)在棱上是否存在点
使
?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面与底面
所成锐二面角的正切值.