游客
题文

如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-2,0)、B(4,0)、C(0,2).

(1)请用尺规作出△ABC的外接圆⊙P(保留作图痕迹,不写作法);
(2)求出(1)中外接圆圆心P的坐标;
(3)⊙P上是否存在一点Q,使得△QBC与△AOC相似?如果存在,请求出点Q 坐标;如果不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理 相似多边形的性质 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

如图,点C、F在BE上,BF=CE,AB=DE,∠B=∠E。求证:∠ACE=∠DFE

在图1至图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE和AD在同一直线上.
操作示例:
当AE<a时,如图1,在BA上选取适当的点G,BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置,恰能构成四边形FGCH.
思考发现:小明在操作后发现:该剪拼方法是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上,连接CH.由剪拼方法可得DH=BG,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图所示),
实践探究:
(1)小明判断出四边形FGCH是正方形,请你给出判断四边形FGCH是正方形的方法。
(2)经测量,小明发现图1中BG是AE一半,请你证明小明的发现是正确的。(提示:过点F作FM⊥AH,垂足为点M);
拓展延伸
类比图1的剪拼方法,请你就图2至图4的三种情形分别画出剪拼成一个新正方形的示意图

如图,抛物线y=ax2 + bx + c 交x轴于A、B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0)、C(0,-3)。
(1)求抛物线y= ax2 + bx + c 的解析式;
(2)求△AOC和△BOC的面积比;
(3)在对称轴上是否存在一个P点,使△PAC的周长最小。若存在,请你求出点P的坐标;若不存在,请你说明理由。

我校数学兴趣小组为了解美利达自行车的销售情况,对我市美利达专卖店第一季度 A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整)。
(1) 该店第一季度售出美利达自行车共多少辆?
(2) 把两幅统计图补充完整;
(3) 若该专卖店计划订购这四款型号自行车900辆,求C型自行车应订购多少辆?

临近端午节,某食品店每天卖出300只粽子,卖出一只粽子的利润为1元..经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获得的利润更多,该店决定把零售单价下降m(0<m<1)元,
(1)零售单价降价后,该店每天可售出只粽子,利润为元。
(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元,且卖出的粽子更多?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号