设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.
(3)过M()的直线
:
与过N(
)的直线
:
的交点P(
)在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求
·
的值.
已知函数f(x)=,x∈
,
.
(1) 当a=时,求函数f(x)的最小值;
(2) 若函数的最小值为4,求实数
设数列{}是等差数列,数列{
}的前
项和
满足
,
,
且。
(1)求数列{}和{
}的通项公式:
(2)设为数列{
.
}的前
项和,求
.
某企业生产A,B两种产品,生产每吨产品所需的劳动力和煤、电耗如下表:
已知生产每吨A产品的利润是5万元,生产每吨B产品的利润是10万元,现因条件限制,该企业仅有劳动力300个,煤360 t,并且供电局只能供电200 kW,试问该企业生产A,B两种产品各多少吨,才能获得最大利润?
火车站北偏东
方向的
处有一电视塔,火车站正东方向的
处有一小汽车,测得
距离为31
,该小汽车从
处以60公里每小时的速度前往火车站,20分钟后到达
处,测得离电视塔21
,问小汽车到火车站还需多长时间?
已知数列{}中,
,
,
(1)求证数列{}为等比数列.
(2)判断265是否是数列{}中的项,若是,指出是第几项,并求出该项以前所有项的和(不含265),若不是,说明理由.