游客
题文

气球下挂一重物,以v0=10m/s匀速上升,当到达离地高h=175m处时,悬挂重物的绳子突然断裂,(g取10m/s2)求:
⑴重物离地的最大高度H。
⑵从绳子断裂开始,重物经多少时间落到地面?
⑶重物落地的速度多大?

科目 物理   题型 计算题   难度 中等
知识点: 竖直上抛运动
登录免费查看答案和解析
相关试题

在金属板A、B间加上如图乙所示的大小不变、方向周期性变化的交变电压Uo,其周期是T。现有电子以平行于金属板的速度vo从两板中央射入。已知电子的质量为m,电荷量为e,不计电子的重力,求:
(1)若电子从t=0时刻射入,在半个周期内恰好能从A板的边缘飞出,则电子飞出时速度的大小是多少?
(2)若电子从t=0时刻射入,恰能平行于金属板飞出,则金属板至少多长?
(3)若电子恰能从两板中央平行于板飞出,电子应从哪一时刻射入,两板间距至少多大?

如图所示,在竖直放置的光滑半圆弧绝缘细管的圆心O处固定一点电荷,将质量为m,带电量为+q的小球从圆弧管的水平直径端点A由静止释放,小球沿细管滑到最低点B时,对管壁恰好无压力,求:
(1)则固定于圆心处的点电荷在A B弧中点处的电场强度大小
(2)若把O处固定的点电荷拿走,加上一个竖直向下场强为E的匀强电场,带电小球仍从A点由静止释放,下滑到最低点B时,小球对环的压力多大?

根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。

为减少烟尘排放对空气的污染,某同学设计了一个如图所示的静电除尘器,该除尘器的上下底面是边长为L=0.20m的正方形金属板,前后面是绝缘的透明有机玻璃,左右面是高h=0.10m的通道口。使用时底面水平放置,两金属板连接到U=2000V的高压电源两极(下板接负极),于是在两金属板间产生一个匀强电场(忽略边缘效应)。均匀分布的带电烟尘颗粒以v=10m/s的水平速度从左向右通过除尘器,已知每个颗粒带电荷量 q=+2.0×10-17C,质量m=1.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。在闭合开关后

(1)求烟尘颗粒在通道内运动时加速度的大小和方向;
(2)求除尘过程中烟尘颗粒在竖直方向所能偏转的最大距离;
(3)除尘效率是衡量除尘器性能的一个重要参数。除尘效率是指一段时间内被吸附的烟尘颗粒数量与进入除尘器烟尘颗粒总量的比值。试求在上述情况下该除尘器的除尘效率;若用该除尘器对上述比荷的颗粒进行除尘,试通过分析给出在保持除尘器通道大小不变的前提下,提高其除尘效率的方法。

如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B端的切线沿水平方向。质量m=1.0kg的滑块(可视为质点)在水平恒力F=10.0N的作用下,从A点由静止开始运动,当滑块运动的位移x=0.50m时撤去力F。已知A、B之间的距离x0=1.0m,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s2。求:

(1)在撤去力F时,滑块的速度大小;
(2)滑块通过B点时的动能;
(3)滑块通过B点后,能沿圆弧轨道上升的最大高度h=0.35m,求滑块沿圆弧轨道上升过程中克服摩擦力做的功。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号