如图所示,绝缘水平面上的AB区域宽度为d,带正电、电量为q,质量为m的小滑块以大小为v0的初速度从A点进入AB区域,当滑块运动至区域的中点C时,速度大小为,从此刻起在AB区域内加上一个水平向左的匀强电场,电场强度E保持不变,并且AB区域外始终不存在电场.
(1)求滑块受到的滑动摩擦力大小.
(2)若加电场后小滑块受到的电场力与滑动摩擦力大小相等,求滑块离开AB区域时的速度.
(3)要使小滑块在AB区域内运动的时间到达最长,电场强度E应满足什么条件?并求这种情况下滑块离开AB区域时的速度.
如图,质量分别为2m和m的A、B两物体通过轻质细线绕过光滑滑轮.弹簧下端与地面相连,上端与B连接, A放在斜面上,斜面光滑.开始时用手控住A,使细线刚好拉直,但无拉力,此时弹簧弹性势能为EP.滑轮左侧细线竖直,右侧细线与斜面平行.释放A后它沿斜面下滑,当弹簧刚好恢复原长时,B获得最大速度.重力加速度为g,求:
(1)斜面倾角α;
(2)刚释放A时,A的加速度;
(3)B的最大速度vm.
在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为(单位:
),式中
。将一光滑小环套在该金属杆上,并从
处以
的初速度沿杆向下运动,取重力加速度
。求
(1)当小环运动到时的速度大小;
(2)该小环最远能运动到的位置坐标多少?
半径R = 40cm竖直放置的光滑圆轨道与水平直轨道相连接如图所示。质量m = 50g的小球A以一定的初速度由直轨道向左运动,并沿圆轨道的内壁冲上去。如果小球A经过N点时的速度v1= 6m/s,小球A经过轨道最高点M后作平抛运动,平抛的水平距离为1.6m,(g=10m/s2)。求:
(1)小球经过最高点M时速度多大;
(2)小球经过最高点M时对轨道的压力多大;
(3)小球从N点滑到轨道最高点M的过程中克服摩擦力做的功是多少。
如图所示,某人距离墙壁10m起跑,向着墙壁冲去,挨上墙之后立即返回。设起跑的加速度为4 m/s2,运动过程中的最大速度为4 m/s,快到达墙根时需减速到零,不能与墙壁相撞。减速的加速度为8 m/s2,求该人到达墙壁需要的时间为多少?
如图所示,P是倾角为30°的光滑固定斜面.劲度为k的轻弹簧一端同定在斜面底端的固定挡板C上,另一端与质量为m的物块A相连接.细绳的一端系在物体A上,细绳跨过不计质量和摩擦的定滑轮,另一端有一个不计质量的小挂钩.小挂钩不挂任何物体时,物体A处于静止状态,细绳与斜面平行.在小挂钩上轻轻挂上一个质量也为m的物块B后,物体A沿斜面向上运动.斜面足够长,运动过程中B始终未接触地面.
(1)求物块A刚开始运动时的加速度大小a;
(2)设物块A沿斜面上升通过Q点位置时速度最大,求Q点到出发点的距离x0及最大速度vm;
(3)把物块B的质量变为Nm(N>0.5),小明同学认为,只要N足够大,就可以使物块A沿斜面上滑到Q点时的速度增大到2vm,你认为是否正确?如果正确,请说明理由,如果不正确,请求出A沿斜面上升到Q点位置时的速度的范围.