(本题8分)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).
(1)A点所表示的实际意义是 ;= ;
(2)求出AB所在直线的函数关系式;
(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
已知x2+y2-6x+10y+34=0,求x+y的值。
(本题6分)已知一个正数的平方根为,求这个正数。
(每小题6分,共12分)
(1)先化简,再求值: [(2x-3y)2-2x(2x+3y)]÷9y,其中x=3,y=-2.
(2)已知a+b=4,ab=3,求(a-b)2的值.
把下列多项式分解因式(每小题4分,共12分)
(1)9m2n-6mn2
(2)4x2-16y2
(3)2a3-6ab(2a-3b).
如图,在等边△ABC中, M为BC边上的中点, D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE.
(1)填空:若D与M重合时(如图1)∠CBE= 60°度;
(2)如图2,当点D在线段AM上时(点D不与A、M重合),请判断(1)中结论是否成立?并说明理由;
(3)在(2)的条件下,如图3,若点P、Q在BE的延长线上,且CP=CQ=4,AB=6,试求PQ的长.