(本题12分)如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
(本题12分)如图,在△ABC中,已知AB=AC,∠BAC=90o,BC=6cm,,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上(向上或向下)以每秒1厘米的速度运动,连结AD、AE,设运动时间为t秒.
(1)求AB的长;
(2)当t为多少时,△ABD的面积为6cm2?
(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).
(本题12分)如图,是一个运算流程.
(1)分别计算:当x=150时,输出值为,当x=27时,输出值为;
(2)若需要经过两次运算,才能运算出y,求x的取值范围;
(3)请给出一个x的值,使之无论运算多少次都不能输出,并请说明理由.
(本题10分)如图甲,已知:在△ABC中,∠BAC=90º,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E,设BD=m,CE=n.
(1)求DE的长(用含m,n的代数式表示);
(2)如图乙,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=(0º<
<180º),设BD=m,CE=n.问DE的长如何表示?并请证明你的结论
(本题10分)如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.
(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)
(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论.
某礼品制造工厂接受一批玩具熊的订货任务,按计划天数生产,如果每天生产20个玩具熊,则比订货任务少100个;如果每天生产23个玩具熊,则可以超过订货任务20个.
请求出这批玩具熊的订货任务是多少个?原计划几天完成任务?