(本小题满分10分)在中,内角所对的边分别为,若.(1)求证:成等比数列;(2)若,求的面积.
已知椭圆过点,且离心率为. (1)求椭圆的方程; (2)为椭圆的左右顶点,点是椭圆上异于的动点,直线分别交直线于两点.证明:以线段为直径的圆恒过轴上的定点.
如图,在三棱柱中,,顶点在底面上的射影恰为点,且. (Ⅰ)证明:平面平面; (Ⅱ)求棱与所成的角的大小; (Ⅲ)若点为的中点,并求出二面角的平面角的余弦值.
已知等比数列的公比, 是和的一个等比中项,和的等差中项为,若数列满足(). (Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.
已知向量,. (I)若,求的值; (II)在中,角的对边分别是,且满足,求函数的取值范围.
设函数. (I)解不等式;(II)求函数的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号