在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为(米/单位时间),单位时间内用氧量为
(
为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为
(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为
.
(1)将表示为
的函数;
(2)设0<≤5,试确定下潜速度
,使总的用氧量最少.
某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.
(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
已知圆及直线
. 当直线
被圆
截得的弦长为
时,
求:(1)的值;
(2)过点并与圆
相切的切线方程.
在正方体AC¢中,E、F、G、P、Q、R分别是所在棱AB、BC、BB¢、A¢D¢、D¢C¢、DD¢的中点,求证:平面PQR∥平面EFG。
已知指数函数,当
时,有
,解关于x的不等式
已知函数.
(Ⅰ)若函数在
上是增函数,求正实数
的取值范围;
(Ⅱ)若,
且
,设
,求函数
在
上的最大值和最小值.