在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为(米/单位时间),单位时间内用氧量为(为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为.(1)将表示为的函数;(2)设0<≤5,试确定下潜速度,使总的用氧量最少.
已知且,函数, (1)若,求函数的值域; (2)利用对数函数单调性讨论不等式中的取值范围.
已知二次函数满足条件,及. (1)求的解析式; (2)求在上的最值.
已知,. (1)求和; (2)定义且,求和.
某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
等比数列的首项为,公比为,用表示这个数列的第n项到第m项共项的和. (Ⅰ)计算,,,并证明它们仍成等比数列; (Ⅱ)受上面(Ⅰ)的启发,你能发现更一般的规律吗?写出你发现的一般规律,并证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号