古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”(如图①),而把1,4,9,16,…这样的数称为“正方形数”(如图②).如果规定a1=1,a2=3,a3=6,a4=10,…;b1=1,b2=4,b3=9,b4=16,…;y1=2a1+b1,y2=2a2+b2,y3=2a3+b3,y4=2a4+b4,…,那么,按此规定, 。
如图,在平面直角坐标系中,点A、B、C的坐标分别是(﹣1,﹣1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,﹣2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是 .
若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是 .
把直线y=2x﹣1向上平移2个单位,所得直线的解析式是 .
从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是 .
已知a、b为两个连续整数,且a<<b,则a+b= .