游客
题文

如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(2,0)和点B(-6,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与轴交于点M ,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标.
(3)设点Q是抛物线对称轴上的一个动点,当点Q满足最大时,求出Q点的坐标.
(4)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如下图所示,△ABC中,AB="15" cm,AC="24" cm,∠A=60°,求BC的长.

如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N。
(1)求证:MN=AM+BN;

(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由。

如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.

如图:AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。
求证:BE⊥AC。

如图:AC=DF,AD=BE,BC=EF。求证:AC∥DF。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号