已知椭圆的焦距为
,且过点
.
(1)求椭圆的方程;
(2)已知,是否存在
使得点
关于
的对称点
(不同于点
)在椭圆
上?若存在求出此时直线
的方程,若不存在说明理由.
已知椭圆>b>
的离心率为
且椭圆的一个焦点与抛物线
的焦点重合,斜率为
的直线
过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围;
(3)试用m表示△MPQ的面积S,并求面积S的最大值.
直三棱柱中,
,
,
,
,点D在
上.
(1)求证:;
(2)若D是AB中点,求证:AC1∥平面B1CD;
(3)当时,求二面角
的余弦值.
已知数列的前n项和为
,
(1)证明:数列是等差数列,并求
;
(2)设,求证:
.
已知向量,
,函数
.
(1)若,求
的值;
(2)在锐角△ABC中,角A,B,C的对边分别是,且满足
,求
的取值范围.
已知数列{an}满足:(其中常数λ>0,n∈N*).
(1)求数列{an}的通项公式;
(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;
(3)设Sn为数列{an}的前n项和.若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围.