设是圆
上的点,过
作直线
垂直
轴于点
,
为
上一点,且
,当点
在圆上运动时,记点
的轨迹为曲线
.
(Ⅰ)求曲线的方程;
(Ⅱ)设过点的直线与曲线
交于
两点,且满足
.
(1)若,求
的值;
(2)若分别为曲线
的左、右顶点,证明:
(本小题满分13分)
运货车以每小时x千米的速度匀速行驶130千米(60≤x≤100),假设汽油的价格是每升2元,而汽车每小时耗油升,付给司机的工资是每小时14元。
(1)求这次行车总费用y关于x的表达式
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值。
(本小题满分13分)已知等差数列的前
项和为
,且
,
(1)求数列的通项公式
;
(2)若数列满足
,求数列
的前
项和
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值。
(本题满分12分)
已知函数的零点为
,
(1)试求的值;
(2)解不等式。
(本小题满分13分)
函数,数列
和
满足:
,
,函数
的图像在点
处的切线在
轴上的截距为
.
(1)求数列{}的通项公式;
(2)若数列的项中仅
最小,求
的取值范围;
(3)若函数,令函数
数列
满足:
且
证明:
.