(本小题满分14分)如图,四棱柱中,
^底面ABCD,且
. 梯形ABCD的面积为6,且AD//BC,AD=2BC,
. 平面
与
交于点E.
(1)证明:EC//;
(2)求三棱锥的体积;
(3)求二面角的大小.
(本小题满分12分)学习小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.
(1)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;
(2)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,该小组没有参加过数学研究性学习活动的同学个数是一个随机变量,求随机变量
的分布列及数学期望
.
(本小题满分12分)如图,在棱长为2的正方体的中点,P为BB1的中点.
(I)求证;
(II)求异面直线所成角的大小;
(本小题满分10分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率.
已知定圆,动圆
过点
且与圆
相切,记动圆圆
心的轨迹为
.
(Ⅰ)求曲线的方程;
(Ⅱ)若点为曲线
上任意一点,证明直线
与曲线
恒有且只有一个公共点.
已知函数是定义在
上的奇函数,其图象过点
和
点.
(Ⅰ)求函数的解析式,并求
的单调区间;
(Ⅱ)设,当实数
如何取值时,关于
的方程
有且只有一个实
数根?