如图所示,在直角坐标系xoy的第一象限中,存在竖直向下的匀强电场,电场强度大小为4E0,虚线是电场的理想边界线,虚线右端与x轴的交点为A,A点坐标为(L、0),虚线与x轴所围成的空间内没有电场;在第二象限存在水平向右的匀强电场。电场强度大小为E0。和
两点的连线上有一个产生粒子的发生器装置,产生质量均为m,电荷量均为q静止的带正电的粒子,不计粒子的重力和粒子之间的相互作用,且整个装置处于真空中。已知从MN上静止释放的所有粒子,最后都能到达A点:
(1)若粒子从M点由静止开始运动,进入第一象限后始终在电场中运动并恰好到达A点,求到达A点的速度大小;
(2)若粒子从MN上的中点由静止开始运动,求该粒子从释放点运动到A点的时间;
(3)求第一象限的电场边界线(图中虚线)方程。
将一小球以3m/s的速度水平抛出,它落地时的速度大小为5m/s,求小球在空中运动的时间及位移大小. (取g=10 m/s2)
实验室考查氢原子跃迁时的微观效应。已知氢原子能级图如图所示,氢原子质量为。设原来处于静止状态的大量激发态氢原子处于n=5的能级状态。
①求氢原子由高能级向低能级跃迁时,可能发射出多少种不同频率的光;
②若跃迁后光子沿某一方向飞出,且光子的动量可以用表示a为普朗克常量,v为光子频率,c为真空中光速),求发生电子跃迁后氢原子的最大反冲速率。(保留三位有效数字)
如图所示是一列简谐横波上A、B两质点的振动图象,该波由A传向B两质点沿波的传播方向上的距离,波长大于3.0 m,求这列波的波速
如图所示,圆柱形气缸开口向上竖直放置在水平面上,气缸足够长,内截曲积为S,大气压强为P0,一厚度不计、质量为的活塞封住一定量的理想气体,温度为T0时缸内气体体积为V0 ,先在活塞上缓慢放上质量为3m的砂子,然后将缸内气体温度缓慢升高到2T0,求:
①最后缸内气体的体积;
②在右图中_出缸内气体状态变化的p-V图象
如图所示,M、N为加速电场的两极板,M板中心有一小孔Q,其正上方有一半径为R1=1m的圆形磁场区域,圆心为0,另有一内半径为R1 ,外半径为m的同心环形磁场区域,区域边界与M板相切于Q点,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面。一比荷
C/kg带正电粒子从N板的P点由静止释放,经加速后通过小孔Q,垂直进入环形磁场区域。已知点P、Q、O在同一竖直线上,不计粒子的重力,且不考虑粒子的相对论效应。
(1) 若加速电压V,求粒子刚进入环形磁场时的速率v0
(2)要使粒子能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3) 在某加速电压下粒子进入圆形磁场区域,恰能水平通过圆心O,之后返回到出发点P,求粒子从Q孔进人磁场到第一次回到Q点所用的时间。