已知函数R
,曲线
在点
处的切线方程为
.
(1)求的解析式;
(2)当时,
恒成立,求实数
的取值范围;
(3)设是正整数,用
表示前
个正整数的积,即
.求证:
.
已知函数,试讨论此函数的单调性。
求过直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点,且到点P(0,4)的距离为1的直线的方程.
已知P1(3,2),P2(8,3),若点P在直线P1P2上,且满足|P1P|=2|PP2|,求点P的坐标。
设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.
(1)求f()、f(
);
(2)证明f(x)是周期函数;
设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值.