(本题10分)阅读材料:小明在学习实数后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+
)
,善于思考的小明进行了以下探索:
设a+b=(m+n
)
(其中a、b、m、n均为正整数),
则有a+b=m2+2n2+2mn
,∴a= m2+2n2,b=2mn.
这样小明就找到了一种把部分a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n
)
,用含m、n的式子分别表示a、b,得:a= , b= ;
(2)利用所探索的结论,找一组正整数a、b、m、n填空: + =( +
)
;
(3)若a+4=(m+n
)
,且a、m、n均为正整数,求a的值.
计算:
△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F .
(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;
(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);
(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.
已知:抛物线经过点
.
(1)求的值;
(2)若,求这条抛物线的顶点坐标;
(3)若,过点
作直线
轴,交
轴于点
,交抛物线于另一点
,且
,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
如图,四边形OABC是面积为4的正方形,函数的图象经过点B.
(1) 求k的值;
(2)将正方形OABC分别沿直线AB,BC翻折,得到正方形MABC′和NA′BC.设线段MC′,NA′分别与函数的图象交于点F,E. 求线段EF所在直线的解析式
已知:如图,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC于点E.
(1) 求证:DE是⊙O的切线;
(2)如果⊙O的半径为2,sin∠B=,求BC的长.