对数列{an},如果∃k∈N*及λ1,λ2,…,λk∈R,使an+k=λ1an+k﹣1+λ2an+k﹣2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:①若{an}是等比数列,则{an}为1阶递归数列;②若{an}是等差数列,则{an}为2阶递归数列;③若数列{an}的通项公式为,则{an}为3阶递归数列.其中,正确结论的个数是( )
在中,一椭圆与一双曲线都以为焦点,且都过它们的离心率分别为则的值为( )
为的两内角,则“”是“”的( )条件
已知的外心为则( )
三个学校分别有1名、2名、3名学生获奖,这6名学生要排成一排合影,则同校学生相邻排列的概率是( )
在等差数列中,则其前11项的和( )
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号