对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+=( )
设定义在上的可导函数的导函数的图象如右所示,则的极值点的个数为( )
函数的单调递增区间是()
凡自然数都是整数,而 4是自然数所以,4是整数。以上三段论推理()
若函数,则()
函数的极大值为,那么的值是()
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号