已知椭圆=1(a>b>0)的离心率
,过点
和
的直线与坐标原点距离为
.
(1)求椭圆的方程;
(2)已知定点,若直线
与椭圆相交于
两点,试判断是否存在
值,使以
为直径的圆过定点
?若存在求出这个
值,若不存在说明理由.
已知,命题
:对任意
,不等式
恒成立;命题
:存在
,使不等式
成立.
(1)若为真命题,求
的取值范围;
(2)若为假,
为真,求
的取值范围。
已知数列的相邻两项
、
是关于
的方程
的两根,且
。
(1)求证:数列是等比数列;
(2)求数列的前
项的
和及数列
的通项公式。
已知向量,记
。
(1)若,求
的值;
(2)中,角
、
、
的对边分别为
、
、
,且满足
,
,
,试求
的面积。
已知函数.(
为常数,
)
(Ⅰ)若是函数
的一个极值点,求
的值;
(Ⅱ)求证:当时,
在
上是增函数;
(Ⅲ)若对任意的,总存在
,使不等式
成立,求实数
的取值范围.
已知各项为正数的数列的前
项和为
,且满足
,
(1)求数列的通项公式
(2)令,数列
的前
项和为
,若
对一切
恒成立,求
的最小值.