已知分别是椭圆的左、右焦点,椭圆过点且与抛物线有一个公共的焦点.(1)求椭圆方程;(2)斜率为的直线过右焦点,且与椭圆交于两点,求弦的长;(3)为直线上的一点,在第(2)题的条件下,若△为等边三角形,求直线的方程.
在△ABC中,a,b,c分别是角A、B、C所对的边,且b2=ac,向量和满足. (1)求的值; (2)三角形ABC为是否为等边三角形.
若点在线段上,且,求的面积;
坐标原点,定点B的坐标为(2,0)。 (1)若动点M满足,求动点M的轨迹C 的方程; (2)若过点B的直线(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),且,试求λ的取值范围。
(1)当a=-1时,求函数图像上的点到直线距离的最小值; (2)是否存在正实数a,使对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号