阅读下面的文字,解答问题:(本题8分)
大家知道是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,但是由于
,所以
的整数部分为1,将
减去其整数部分1,所得的差就是其小数部分
,根据以上的内容,解答下面的问题:
(1)的整数部分是________,小数分部是________;
(2)的整数部分是________,小数小数分部是________;
(3)若设整数部分是
小数部分是
,求
的值.
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2,指针位置固定,转动转盘后任其自由停止后,某个扇形会恰好停在指针所指的位置,得到这个扇形上相应的数.若指针恰好指在等分线上,则需重新转动转盘.
(1)若小静转动转盘一次,则她得到负数的概率为;
(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.请用列表法(或画树状图)求出两人“不谋而合”的概率.
如图,在边长为1的小正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别为A(-2,3)、B(-3,1).△AOB绕点O顺时针旋转90°后得到△A1OB1。
(1)画出△A1OB1;
(2)点A1的坐标为;
(3)点A旋转到点A1所经过的路线长为_____________.(结果保留π)
已知关于的方程
-(k+2)
+2k=0
(1)说明:无论k取何值,方程总有实数根;
(2)若方程有两个相等的实数根,求出方程的根.
先化简,再求值:,其中a=
-1,b=
.
(1)计算:(-1)2011+(-3)0+
;(2)解方程:
(
-4)=5.