(本小题满分15分)已知函数,
(1)若a=1,试判断并用定义证明函数f(x)在[1,4]上的单调性;
(2)当时,求函数f(x)的最大值的表达式M(a);
(3)是否存在实数a,使得f(x)=3有且仅有3个不等实根,且它们成等差数列,若存在,求出所有a的值,若不存在,说明理由.
(本题满分共15分)已知函数
(1)当时,试判断函数
的单调性;
(2)当时,对于任意的
,恒有
,求
的最大值.
(本题满分共15分)已知抛物线的焦点F到直线
的距离为
.
(1)求抛物线的方程;
(2)如图,过点F作两条直线分别交抛物线于A、B和C、D,过点F作垂直于轴的直线分别交
和
于点
.
求证:.
(本题满分共14分)已知数列,
,且
,
(1)若成等差数列,求实数
的值;(2)数列
能为等比数列吗?若能,
试写出它的充要条件并加以证明;若不能,请说明理由。
(本题满分共14分)已知,
且
.
(1)求;
(2)当时,求函数
的值域.
本题满分14分) 设函数f (x)=ln x+在(0,
) 内有极值.
(Ⅰ) 求实数a的取值范围;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求证:f (x2)-f (x1)>e+2-
.
注:e是自然对数的底数.