(本小题满分15分)已知函数,(1)若a=1,试判断并用定义证明函数f(x)在[1,4]上的单调性;(2)当时,求函数f(x)的最大值的表达式M(a);(3)是否存在实数a,使得f(x)=3有且仅有3个不等实根,且它们成等差数列,若存在,求出所有a的值,若不存在,说明理由.
已知函数 (Ⅰ)求的单调递增区间; (Ⅱ)若,求的值域
已知函数,其中常数. (1)若,求函数的单调递增区间; (2)若对任意实数,不等式在上恒成立,求实数的取值范围.
已知函数在处取得极值为. (1)求实数的值; (2)若关于的方程在有两个不同的解,求实数的取值范围.
已知函数(k∈R)为偶函数. (1)求k的值; (2)设,若函数f(x)与g(x)图像有且只有一个公共点,求实数a的取值范围。
已知命题P:若幂函数过点,实数满足。命题Q:实数满足。且为真,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号