游客
题文

(本题10分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F,AC∥BF.
                   
(1)如图1,求证:FG=FB;
(2)如图2,连接BD、AC,若BD=BG,求证:AC∥BF;
(3)在(2)的条件下,若tan∠F=,CD=1,求⊙O的半径

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理 解直角三角形
登录免费查看答案和解析
相关试题

如图,抛物线经过A(4,0)、B(1,0)、C(0,-2)三点.

(1)求出抛物线的解析式;
(2)在直线AC上方的抛物线上有一动点D,当△ACD的面积最大时,求出点D的坐标;
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

如图,在矩形ABCD的对角线AC上有一动点O,以OA为半径作⊙O交AD、AC于点E、F,连结CE.

(1)若CE恰为⊙O的切线,求证:∠ACB=∠DCE;
(2)在(1)的条件下,若AB=,BC=2,求⊙O的半径.

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.

(1)求证:AD⊥DC;
(2)若AD=2,AC=,求AB的长.

已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.

(1)求证:△OCP∽△PDA;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长;

如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.

(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号