游客
题文

三个队植树,第一队种a棵,第二队种的比第一队种的树的2倍还少8棵,第三队种的比第二队种的树的一半多6棵,问三个队共种多少棵树?并求当棵时,三个队种树的总棵数。

科目 数学   题型 解答题   难度 中等
知识点: 整式的加减
登录免费查看答案和解析
相关试题

在平面直角坐标系中,我们定义直线 y = ax - a 为抛物线 y = a x 2 + bx + c ( a b c 为常数, a 0 ) 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 y 轴上的三角形为其“梦想三角形”.

已知抛物线 y = - 2 3 3 x 2 - 4 3 3 x + 2 3 与其“梦想直线”交于 A B 两点(点 A 在点 B 的左侧),与 x 轴负半轴交于点 C

(1)填空:该抛物线的“梦想直线”的解析式为   ,点 A 的坐标为   ,点 B 的坐标为   

(2)如图,点 M 为线段 CB 上一动点,将 ΔACM AM 所在直线为对称轴翻折,点 C 的对称点为 N ,若 ΔAMN 为该抛物线的“梦想三角形”,求点 N 的坐标;

(3)当点 E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 F ,使得以点 A C E F 为顶点的四边形为平行四边形?若存在,请直接写出点 E F 的坐标;若不存在,请说明理由.

某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组 ( x 表示成绩,单位:分), A 组: 75 x < 80 B 组: 80 x < 85 C 组: 85 x < 90 D 组: 90 x < 95 E 组: 95 x < 100 .并绘制出如图两幅不完整的统计图.

请根据图中信息,解答下列问题:

(1)参加初赛的选手共有   名,请补全频数分布直方图;

(2)扇形统计图中, C 组对应的圆心角是多少度? E 组人数占参赛选手的百分比是多少?

(3)学校准备组成8人的代表队参加市级决赛, E 组6名选手直接进入代表队,现要从 D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.

如图,在平面直角坐标系中,将坐标原点 O 沿 x 轴向左平移2个单位长度得到点 A ,过点 A y 轴的平行线交反比例函数 y = k x 的图象于点 B AB = 3 2

(1)求反比例函数的解析式;

(2)若 P ( x 1 y 1 ) Q ( x 2 y 2 ) 是该反比例函数图象上的两点,且 x 1 < x 2 时, y 1 > y 2 ,指出点 P Q 各位于哪个象限?并简要说明理由.

如图,抛物线 y = a x 2 + bx + c ( a 0 ) 的图象经过 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 6 ) 三点.

(1)求抛物线的解析式.

(2)抛物线的顶点 M 与对称轴 l 上的点 N 关于 x 轴对称,直线 AN 交抛物线于点 D ,直线 BE AD 于点 E ,若直线 BE ΔABD 的面积分为 1 : 2 两部分,求点 E 的坐标.

(3) P 为抛物线上的一动点, Q 为对称轴上动点,抛物线上是否存在一点 P ,使 A D P Q 为顶点的四边形为平行四边形?若存在,求出点 P 的坐标;若不存在,请说明理由.

如图,在 Rt Δ ABC 中, ACB = 90 ° D AB 边上的一点,以 AD 为直径的 O BC 于点 E ,交 AC 于点 F ,过点 C CG AB AB 于点 G ,交 AE 于点 H ,过点 E 的弦 EP AB 于点 Q ( EP 不是直径),点 Q 为弦 EP 的中点,连结 BP BP 恰好为 O 的切线.

(1)求证: BC O 的切线.

(2)求证: EF ̂ = ED ̂

(3)若 sin ABC = = 3 5 AC = 15 ,求四边形 CHQE 的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号