游客
题文

已知:如图,∠1=∠2,DE=DC,EF=AC.求证:EF∥AB.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,-1),另一顶点B坐标为(-2,0),已知二次函数y=x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A'D'∥y轴且经过点B,直尺沿x轴正方向平移,当A'D'与y轴重合时运动停止.
(1)求点C的坐标及二次函数的关系式;
(2)若运动过程中直尺的边A'D'交边BC于点M,交抛物线于点N,求线段MN长度的最大值;
(3)如图②,设点P为直尺的边A'D'上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.
(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D'在抛物线外.)

如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.

(1)若ED=BE,求∠F的度数:
(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);
(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.

如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(-4,0),B(-1,0)两点.

(1)求抛物线的解析式;
(2)在第三象限的抛物线上有一动点D.如图,若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.

(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.

(1)求证:CD为⊙O的切线;
(2)若DC=4,AC=5,求⊙O的直径的AE.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号