如图,直角坐标系中,点的坐标为
,以线段
为边在第四象限内作等边
,点
为
正半轴上一动点
,连结
,以线段
为边在第四象限内作等边
,直线
交
轴于点
.
(1)与
全等吗?判断并证明你的结论;
(2)将等边沿
轴翻折,
点的对称点为
.
①点会落在直线
上么?请说明理由;
②随着点位置的变化,点
的位置是否会发生变化? 若没有变化,请直接写出点
,若有变化,请说明理由.
如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为 .
用适当的方法解下列方程:
(1)
(2)
计算
(1)(-
)0-
+
(2)
如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.
(1)若点M的坐标为(3,4),
①求A,B两点的坐标;
②求ME的长.
(2)若,求∠OBA的度数.
(3)设tan∠OBA=x(0<x<1),,直接写出y关于x的函数解析式.
请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程,我们可以将
视为一个整体,然后设
,则原方程可化为
①
解得,
,当y=1时,
,∴
,
;
当y=4时,,∴
,
,∴原方程的解为
=
,
=-
,
=
,
=-
.
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想.
(2)解方程.