以菱形 的对角线交点 为坐标原点, 所在的直线为 轴,已知 , , , 为折线 上一动点,作 轴于点 ,设点 的纵坐标为 .
(1)求 边所在直线的解析式;
(2)设 ,求 关于 的函数关系式;
(3)当 为直角三角形时,求点 的坐标.
已知 的内切圆 与 、 、 分别相切于点 、 、 ,若 ,如图1.
(1)判断 的形状,并证明你的结论;
(2)设 与 相交于点 ,如图2, ,求 的长.
某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.
(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从 开始, 之前演出结束,问参与的小品类节目最多能有多少个?
甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全)
运动员 环数 次数 |
1 |
2 |
3 |
4 |
5 |
甲 |
10 |
8 |
9 |
10 |
8 |
乙 |
10 |
9 |
9 |
|
|
某同学计算出了甲的成绩平均数是9,方差是
,请作答:
(1)在图中用折线统计图将甲运动员的成绩表示出来;
(2)若甲、乙射击成绩平均数都一样,则 ;
(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出 、 的所有可能取值,并说明理由.
矩形 中, 、 分别是 、 的中点, 、 分别交 于 、 两点.
求证:(1)四边形 是平行四边形;
(2) .