已知二次函数(
为常数,且
)的图象过点A(0,1),B(1,-2)和点C(-1,6).
(1)求二次函数表达式;
(2)若,比较
与
的大小;
(3)将抛物线平移,平移后图象的顶点为
,若平移后的抛物线与直线
有且只有一个公共点,请用含
的代数式表示
.
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△
,设旋转角为
,记直线
与
的交点为P.
(1)如图1,当时,线段
的长等于 ,线段
的长等于 ;(直接填写结果)
(2)如图2,当时,求证:
,且
;
(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延 长交BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
某景点的门票价格如表:
购票人数/人 |
1~50 |
51~100 |
100以上 |
每人门票价/元 |
12 |
10 |
8 |
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少钱?
计算:﹣
.
阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y="5" 即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为.
请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;
(2)已知x,y满足方程组.
(i)求的值;
(ii)求的值.