阅读材料:
小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:
设(其中a、b、m、n均为正整数),则有
,
∴a=m2+2n2,b=2mn.
这样小明就找到了一种把类似的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得a=________,b=________;
(2)利用所探索的结论,找一组正整数a、b、m、n填空:;
(3)若,且a、m、n均为正整数,求a的值.
(本小题满分5分)
计算:.
(10分)已知:如图,ABCD是平行四边形,P是CD上的一点,且AP和BP分别平分∠DAB和∠CBA,过点P作AD的平行线,交AB于点Q.(1)求证:AP⊥PB;
(2)若AD=5cm,AP=8cm,求AB的长及△APB的面积.
(10分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.
求证:四边形DECF是菱形.
证明题:说明理由(7分)如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.
证明:∵BE⊥AC于E,CF⊥AB于F
∴∠BFD=∠CED=90°
又∵∠BDF=∠CDE( ) BD=CD
∴△BDF≌△CDE( )
∴DF=DE( )
∴AD平分∠BAC( ).
解方程:(8分)
(1)2x2-4x-5=0 (2)(x-2)2=(2x+3)2