为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8分钟燃烧完毕,此时室内空气中每立方米的含药量为6毫克.请根据题中提供的信息,解答下列问题:
(1)药物燃烧时和药物燃烧后,分别求出y关于x的函数表达式及自变量x的取值范围;
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生才能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
(1)计算:-8sin45°-
(2)先化简,然后x在﹣1、0、1、2四个数中任选一个合适的数代入求值.
如图,已知直线分别交x轴、y轴于A、B两点,抛物线
经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CF.AD⊥CF成立.
(1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由.
(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:AD⊥CF.
(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD=时,求线段CG的长.
如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=
.
(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;
(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.
在一个不透明的盒子里,装有四个分别标有数字1,﹣2,﹣3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)小明抽到的数字是负数的概率是 .
(2)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(3)求小明、小华各取一次小球所确定的点(x,y)落在第二象限的概率.